If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=351
We move all terms to the left:
3x^2-(351)=0
a = 3; b = 0; c = -351;
Δ = b2-4ac
Δ = 02-4·3·(-351)
Δ = 4212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4212}=\sqrt{324*13}=\sqrt{324}*\sqrt{13}=18\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{13}}{2*3}=\frac{0-18\sqrt{13}}{6} =-\frac{18\sqrt{13}}{6} =-3\sqrt{13} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{13}}{2*3}=\frac{0+18\sqrt{13}}{6} =\frac{18\sqrt{13}}{6} =3\sqrt{13} $
| m^2+2m+48=0 | | 0=-6x-2+-4x-1 | | 2x=3+-4 | | 2x+7=4x-27 | | 7u-4u=3 | | 3x^2-15+12=0 | | 3h-h+5h=14 | | 2-3/10x=6 | | 0=-6/x^2-4/x | | 2x/x-1-3x/x+1=1/x | | m/72=8/12 | | 8=(-22/5)x-(-12) | | 3h−h+5h=14 | | 6=-5t2+7t+6 | | 11x-16+8x=5 | | 3(2+4)=4x-10 | | -(k-55)=32 | | x+(x*0.0825)=70 | | 6y+7-2y=4+3y-2 | | 7u−4u=3 | | 5(2x+3)=25x= | | 10p-9=-119 | | 7x+7=8x-5 | | -7+4x=73 | | 3x+2x+x=7x+14 | | 6x+4=11x-2 | | 3k+3=2k+10 | | 41=-1+6r | | 20r-5r-5r+-5r+-4=-19 | | 15+4x=23 | | b^2=476 | | 3y+4y=10+11 |